

COMPARISON OF FILTER LIFETIME BETWEEN HYPERTONIC VERSUS ISOTONIC REGIONAL CITRATE ANTICOAGULATION DURING CONTINUOUS KIDNEY REPLACEMENT THERAPY AKI & CRRT Conference

<u>Anyarin Wannakittirat¹</u>, Khanittha Yimsangyad¹, Nuttha Lumlertgul¹, Sadudee Peerapornratana¹, Nattachai Srisawat¹ ¹Division of Nephrology, Department of Medicine, Chulalongkorn University, Thailand, 10330

Introduction

- Continuous Kidney Replacement Therapy (CKRT) has become an important tool for rescuing organ support for critical care patients worldwide.
- Regional Citrate Anticoagulation (RCA) is used to prolong circuit lifetime especially in patients with high risk of bleeding.
- Owing to current evidence, there is no data showing the difference of isotonic and hypertonic citrate in terms of patient outcomes and CKRT circuit survival.
- The objective of this study is to find whether there is a difference of hypertonic and isotonic regional citrate anticoagulation (RCA) in terms of circuit lifetime and its related factors, and patient outcomes in a real-world practice.

Methods and Materials

- This is a single center retrospective cohort study of critical care patients who needed CKRT during their admission in King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- The time frame was between February 2023 to September 2023.
- Data of patients receiving CKRT during their ICU admission were collected and analyzed. Demographic data, baseline characteristic and patient outcomes were recorded.
- Factors related to circuit clotting such as blood transfusion, circuit ionized calcium, citrate doses, filtration fraction and CKRT prescription were studied.

Results

- 199 filters were evaluated from 97 patients, 98 filters in hypertonic RCA and 101 filters in isotonic RCA.
- Three most common underlying diseases in both groups were hypertension (65% vs. 54%), cardiac diseases (47% vs. 50%), and diabetes mellitus (49% vs. 33%) similarly.
- Most common cause of acute kidney injury (AKI) was septic associated AKI (38% vs. 43%).
- The most frequent indication for CKRT initiations were volume overload (48% vs. 42%), oliguria/anuria (58% vs. 60%), and uremia (37% vs. 44%).
- Baseline characteristics between two groups were equally balanced except for underlying of end stage kidney diseases (ESRD), to be higher in hypertonic groups.

Table 1: Baseline characteristics

	Hypertonic	Isotonic	p-
Characteristics	N=51	N=46	value
Age (years)	67 (56–77)* 70 (60–80)		0.33
Male	31/50 (62) 27/45 (60)		0.84
Medical ICU	34/49 (69)	34/44 (77)	0.39
Underlying disease			
Hypertension	33 (65) 25 (54)		0.30
End Stage Kidney Disease	22 (43) 5/45 (11)		<0.001
Chronic Kidney Disease	15 (29) 13 (28)		0.90
Diabetes Mellitus	25 (49)	15/45 (33)	0.12
Cause of AKI			
SEPTIC	19/50 (38)	19/44 (43)	0.61
ISCHEMIC	18/50 (36)	14/44 (32)	0.67
Nephrotoxic	2/50 (4) 6/43 (14)		0.088
Indications of RRT			
Oliguria/anuria	29/50 (58) 27/45 (60)		0.84
Volume overload	24/50 (48) 19/45 (42)		0.57
Uremia	18/49 (37) 20/45 (44)		0.45
Severity			
SOFA	11 (4)	12 (3)	0.092
Apache II	21 (7)	21 (6)	0.75
On vasopressor	37 (73)	38 (83)	0.24
On mechanical ventilation	40/50 (80)	42 (91)	0.12
Outcome			
RRT days	6 (4–9)	6 (4–10)	0.93
28-day Mortality	26/46 (57)	29 (63)	0.52
ICU Length of stay	9 (6–19)	16 (6–27)	0.27

Results

- The mean total FLT were significantly different between hypertonic and isotonic citrates (median of 72 hours (IQR 45-72) in hypertonic vs. 52 hours (IQR 28-72) in isotonic group, p-value <0.001). The analysis using adjusted filter lifetime showed similar results (median of 72 hours (IQR 72-72) in hypertonic vs. 56 hours (IQR 26-72) in isotonic group, p-value <0.001).
- The Kaplan-Meier plot on filter lifetime was shown in Figure 1, with significant difference with Log-rank test of p <0.001.

Table 2: Filter lifetime between 2 citrate formulas

Outcomes	Hypertonic	Isotonic	p-value
Total filter lifetime (hours), median (IQR)	72 (45–72)	52 (28–72)	<0.001
Total actual filter lifetime (hours), mean (SD)	78 (37)	58 (36)	<0.001
Adjusted actual filter lifetime (hours), mean (SD)	95 (32)	63 (40)	<0.001

Figure 1: Kaplan-Meier on Filter Lifetime (FLT)

Table 3: Uni- and multi-variate analyses of factor affecting premature clots

	Univariate analysis		Multivariable analysis			
Factors	Unadjusted HR (95% CI)	p-value	Adjusted HR (95% CI)	p-value		
Hypertonic	Reference	Reference	Reference	Reference		
Isotonic	4.81 (1.96, 11.8)	0.001	4.30 (1.68, 11.0)*	0.002*		
			2.42 (1.11, 5.28)**	0.026**		
Filtration Fraction	1.06 (1.03, 1.09)	<0.001	NA	NA		
BFR	1.37 (1.11, 1.68)	0.003	NA	NA		
Net UF	1.01 (1.00, 1.02)	0.188	-	-		
Sieving coefficient ^a	0.41 (0.23, 0.72)	0.002	1.00 (0.69, 1.45)	0.997		
Circuit ionized Ca ^a	0.45 (0.22, 0.91)	0.027	0.38 (0.22, 0.66)	0.001		
Corrected citrate doses ^a	0.44 (0.28, 0.70)	<0.001	0.47 (0.32, 0.70)	<0.001		
RBC transfusion	0.89 (0.71, 1.10)	0.280	-	-		
Platelet transfusion	0.85 (0.70, 1.03)	0.097	0.89 (0.76, 1.02)	0.095		
FFP transfusion	1.00 (0.92, 1.09)	0.997	-	-		
^a Data was aggregated from multiple measurements (days) using mean.						

Data was aggregated from multiple measurements (days) using mean. Data was aggregated from multiple measurements (days) using median due to skewness of the data

*Adjusted for imbalance baseline characteristics (p < 0.10)

** Adjusted for imbalance baseline characteristics (p < 0.10) which is significant or marginally significant in the univariate analysis including ESRD, SOFA score and sCr at baseline and significant CRRT factors (p < 0.05). NA: CRRT factors which had <0.05 but shown multicollinearity with the other factors and were excluded from the adjusted model.

Discussion

- Hypertonic RCA had a significant longer filter lifetime and diffusive therapy may prolong circuit lifetime compared with convective or mixed therapy.
- This is one of the first retrospective cohorts, describing difference in citrate type used in CKRT and their relationships with circuit performance. It was also a routine to research utilization in our institution which will lead to an improvement in our practice.

<u>Limitations</u>

- Some of the important information were lost such as circuit pressure monitoring, calcium supplement rates or vascular access problems that might affect filter lifetimes.
- The patients were not randomized, so the type of citrates were chosen by the physician's familiarity.

Conclusions

Hypertonic RCA had a significant longer filter lifetime compared to isotonic RCA. However, more data on a well-constructed randomized controlled trial is needed to confirm these findings.

THE 29TH INTERNATIONAL CONFERENCE ON ADVANCES IN CRITICAL CARE NEPHROLOGY AKI & CRRRT 2024

MARCH 12-15, 2024 SAN DIEGO, CALIFORNIA